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1. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS 

1.1 SIMPLE GAUSSIAN ELIMINATION METHOD 

Consider a system of n equations in n unknowns, 
 
a11x1 + a12x2 + …. + a1nxn = y1 
a21x1 + a22x2 + …. + a2nxn = y2 

… … … … … 

an1x1 + an2x2 + …. + annxn = yn 

 

We shall assume that this system has a unique solution and proceed to describe the 
simple “Gaussian Elimination Method”, (from now on abbreviated as GEM),Page 2 of 11 
for finding the solution.  The method reduces the system to an upper triangular system 
using elementary row operations (ERO). 
 
Let A(1) denote the coefficient matrix A. 
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where aij

(1) = aij 
 
Let 
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where yi

(1) = yi  
 
We assume a11

(1) ≠ 0 
 
Then by ERO applied to A(1) , (that is, subtracting suitable multiples of the first 
row from the remaining rows), reduce all entries below a11

(1) to zero.  Let the 
resulting matrix be denoted by A(2). 
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where     ;
)1(

11

)1(
1)1(

1 a

a
m i

i −=     i > 1.  

 
Note A(2) is of the form 
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Notice that the above row operations on A(1) can be effected by premultiplying 
A(1) by M(1) where 
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(In-1 being the n-1 × n-1 identity matrix). 
i.e. 
 M(1) A(1) = A(2) 
 
Let 
 y(2) = M(1) y(1)   
i.e. 

)2()1( 11 yy RmR ii  → +
 

Then the system Ax = y is equivalent to 
 
A(2)x = y(2) 
 
Next we assume 
 

(2)
22 0a ≠  

 
and reduce all entries below this to zero by ERO 
 

A(2)  → + )2(
2ii mR

    A(3)  ;    
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and  
M(2) A(2) = A(3) ; M(2) y(2) = y(3)   ; 
 
and A(3) is of the form 
 























=

)3()3(
3

)3(
3

)3(
33

)2(
2

)2(
23

)2(
22

)1(
1

)1(
12

)1(
11

)3(

...00

...

...00

...0

......

nnn

n

n

n

aa

aa

aaa

aaa

A

MMMM
 

 
We next assume (3)

33 0a ≠  and proceed to make entries below this as zero.  We 
thus get M(1), M(2), …. , M(r) where 
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M(r) y(r) = y(r+1) 
 
At each stage we assume ( ) 0r

rra ≠ . 
 
Proceeding thus we get,  
 

M(1), M(2), …. , M(n-1) such that 
 
M(n-1) M(n-2) …. M(1) A(1) = A(n)      ;  M(n-1) M(n-2) …. M(1) y(1) = y(n) 

where         
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which is an upper triangular matrix and the given system is equivalent to 
 
A(n)x = y(n) 
 
Since this is an upper triangular, this can be solved by back substitution; and 
hence the system can be solved easily. 
 
Note further that each M(r) is a lower triangular matrix with all diagonal entries as 
1.  Thus determinant of M(r) is 1 for every r.  Now, 
 
A(n) = M(n-1) …. M(1) A(1) 
 
Thus 
 
det A(n) = det M(n-1)  det M(n-2) …. det M(1)  det A(1) 
 
det A(n) = det A(1) = det A  since A = A(1) 
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Now A(n) is an upper triangular matrix and hence its determinant is (1) (2) ( )
11 22

n
nna a aL . 

Thus det A is given by 
 

(1) (2) ( )
11 22det n

nnA a a a= L  
 
Thus the simple GEM can be used to solve the system Ax = y and also to 
evaluate det A provided ( ) 0i

iia ≠ for each i. 
Further note that M(1), M(2), …. , M(n-1) are lower triangular, and nonsingular as 
their det = 1 and hence not zero.  They are all therefore invertible and their 
inverses are all lower triangular, i.e. if L = M(n-1) M(n-2) …. M(1) then L is lower 
triangular and nonsingular and L-1 is also lower triangular.   
 
Now LA = LA(1) = M(n-1) M(n-2) …. M(1) A(1) = A(n) 
 
Therefore A = L-1 A(n) 
 
Now L-1 is lower triangular which we denote by L and A(n) is upper triangular 
which we denote by U, and we thus get the so called LU decomposition  
 
A = LU 
 
of a given matrix A – as a product of a lower triangular matrix with an upper 
triangular matrix.  This is another application of the simple GEM.  REMEMBER IF 
AT ANY STAGE WE GET aii

(1) = 0 WE CANNOT PROCEED FURTHER WITH 
THE SIMPLE GEM. 
 
EXAMPLE: 
 
Consider the system 
 
x1 + x2 + 2x3 = 4 
2x1 - x2 + x3 = 2 
x1 + 2x2        = 3 
 
Here 
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Therefore the given system is equivalent to A(3)x = y(3) ,i.e., 
 
 

x1 + x2 + 2x3 =  4 
 

     -3x2 - 3x3 = -6 
               
                     - 3x3 = -3 
  
Back Substitution  
 
x3 = 1 
 
-3x2 - 3 = - 6 ⇒ -3x2 = -3 ⇒ x2 = 1 
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x1 + 1 + 2 = 4 ⇒ x1 = 1 
 
Thus the solution of the given system is, 
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The determinant of the given matrix A is 
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Therefore A = LU  i.e., 
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is the LU decomposition of the given matrix A. 
 

We observed that in order to apply simple GEM we need ( ) 0r
rra ≠  for each 

stage r.  This may not be satisfied always.  So we have to modify the simple 
GEM in order to overcome this situation.  Further, even if the condition ( ) 0r

rra ≠  is 
satisfied at each stage, simple GEM may not be a very accurate method to use.  
What do we mean by this?  Consider, as an example, the following system:  
 

(0.000003) x1 + (0.213472) x2 + (0.332147) x3 = 0.235262 
(0.215512) x1 + (0.375623) x2 + (0.476625) x3 = 0.127653 
(0.173257) x1 + (0.663257) x2 + (0.625675) x3 = 0.285321 

 
Let us do the computations to 6 significant digits. 
 
Here, 
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M(1) = 
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Thus the given system is equivalent to the upper triangular system 
 
A(3)x = y(3) 
 
Back substitution yields, 
 
x3 = 0.40 00 00 
x2 = 0.47 97 23 
x1 = -1.33 33 3 
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This compares poorly with the correct answers (to 10 digits) given by 
 
x1 =   0.67 41 21 46 94 
x2 =   0.05 32 03 93 39.1 
x3 =  -0.99 12 89 42 52 
 
Thus we see that the simple Gaussian Elimination method needs modification in 
order to handle the situations that may lead to ( ) 0r

rra =  for some r or situations as 
arising in the above example.  In order to do this we introduce the idea of Partial 
Pivoting in the next section. 
 


